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Abstract

After deriving a set of dynamic equations governing the dynamics of a Tethered Satel-
lite System (TSS), stabilizing tension control laws in feedback form are derived. The tether
is assumed rigid and massless, and the equations of motion are derived using the system
Lagrangian. It is observed that, to stabilize the system, tools from stability analysis of
critical nonlinear systems must be applied. This paper employs tools related to the Hopf
Bifurcation Theorem in the construction of the stabilizing control laws, which may be
taken purely linear. Simulations illustrate the nature of the conclusions, and show that

nonlinear terms in the feedback can be used to significantly improve the transient response.



I. Introduction

The topic of Tethered Satellite Systems (TSS) has received considerable attention
in recent years (e.g., [1]-[8], [13], [14]). Potential applications of these systems include
deployment and retrieval of satellites, aiding in space-assembly tasks, use of electrodynamic
tethers for electric power generation [12, p. 3-29], and tethering platforms above the Space
Station for observing stellar and planetary objects [12, p. 3-85]. For other potential
applications, the reader is referred to Rupp and Laue [1] and the NASA publication [12].

In this paper, we focus on the issue of stabilization of a tethered satellite system during
the station-keeping mode. Specifically, consider the TSS depicted in Figure 1. Here, a large
satellite is tethered to a smaller subsatellite, and the configuration is in a circular orbit
around the Earth. During station-keeping, a subsatellite is controlled so as to follow a
prescribed orbit to within a set tolerance [15, p. 220]. By assuming the subsatellite to
be much more massive than the satellite, and that the satellite follows a perfect circular
orbit, we are able to focus attention on the station-keeping control of the subsatellite.
This is accomplished through the design of tether tension control laws in feedback form
which result in regulating the position of the subsatellite relative to the satellite, while
simultaneously regulating the tether length at a prescribed nominal value. The proposed
tension control law is implemented, say, using a reel-type mechanism.

The paper makes use of several simplifying assumptions. For instance, the tether is
assumed rigid and massless. With these assumptions, the TSS can be described by a set of
ordinary differential equations. The system Lagrangian is used to obtain these equations.
Next, we observe that linear feedback-type tension control laws can place all but two poles
of the system. These two poles are a complex conjugate pair of pure imaginary eigenvalues
of the system linearization. To stabilize the system, therefore, tools from stability analysis
of critical nonlinear systems must be applied. Our approach is to use the technique of
[10], in which Hopf bifurcation calculations are employed to construct stabilizing control
laws. First, a class of purely linear stabilizing feedback control laws are given. Next,
nonlinear stabilizing control laws are developed. Simulations are presented which allow
one to compare the transient response of the system with the two types of feedback. The
additional freedom afforded by the inclusion of nonlinear terms can be used to obtain a

significant improvement in the speed of the transient response.



Notation

F - Earth
S - Satellite
m - Subsatellite and subsatellite mass

G - Gravitational constant
M, ms - Mass of the Earth, mass of the satellite

(Zm,Ym,Zm) - Earth-based rotating Cartesian coordinates of subsatellite, with z,, in the
local outgoing vertical direction, and z,, in the direction of motion of the subsatellite
in its orbit (see Figure 2)

(zs,Ys,2s) - Earth-based rotating coordinates of the satellite

(1, Jm, 2m ) - Inertial coordinates of subsatellite

(£s,Us, 2s) - Inertial coordinates of the satellite

@ - Constant angular velocity of the satellite in circular orbit

0, ¢ - In-plane angle and out-of-plane angle of subsatellite relative to local vertical

Wy 1= $, wg := 0, £ - Tether length, v := ¢

ro, 'm - Radius of the satellite orbit, radius of subsatellite orbit

79, T - Generalized torques in directions 6, ¢

Fy - Generalized force along tether

F .= e—c%ﬁé + T—g-qg + Fyl, where a hat indicates a unit vector in the given direction

Re(-) := Real part of (+)
Im(-) := Imaginary part of (-)
t = /~1
II. System Model

Referring to the depictions in Figures 1 and 2, a mathematical model of the TSS may
be derived. Assume the satellite and the subsatellite are point masses and the tether is
massless and rigid. Moreover, take the mass of the satellite to be much larger than that
of the subsatellite (i.e., m, > m). This allows us to take the center of mass of the TSS
to be the satellite, and to consider the satellite as being in a circular orbit around the
Earth. In addition, the gravitational attraction between the subsatellite and the satellite

is neglected.

It is evident from Figure 2 that we have the relationships
Ty = fcosdsinb (1)
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Ym = £sin ¢ (2)

Zm = 1o + £ cos ¢ cos 8 (3)
r2 =rd + 0% 4 2rf cos ¢ cos b. (4)
Also,
Tm cos{dt 0 sinQt Tm
Im | = 0 1 0 Ym
Zm —sinQt 0 cost Zm
Ts cosQit 0 sin{t 0
.733 = 0 1 0 0
Zs —sinQdt 0 cost 70

where the equations above fix a particular choice of time reference.
Since the tether is assumed to be massless, the total kinetic energy of the system is

given by
1 22 .2 2 1 2 .2 .2
KE = Ems(:cs + 9, +2,)+ Em(wm + U + Zm)

1 1 .. : .
= §m392rg + 5m{z2 + 0292 4 £2 cos® ¢(8 + Q)? + Q*r2

+ 2Qrof cos ¢ sin § — 20 Lsin ¢ sin b + 2QroL cos ¢ cos 6(6 + Q)}. (5)

The potential energy of the system arises solely from gravity and is given by

GMm, GMm

PE =

To Tm

Moreover, since the satellite is assumed to be in a circular orbit, it is in a zero-g orbit.

Thus

GMm,

2
Ty

= msQ2r0,

or more succinctly GM = Q%r}. Writing the expression for the system Lagrangian L =
KE — PE and invoking the Lagrangian formulation of dynamics, the dynamic equations

of the system are found to be
9 = ml? cos” ${6 + 2%(9 + Q) — 2tan ¢(8 + Q)¢
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Q%rgsin 8 3

+ £cos ¢ (1_7"_;%)} (6)

Ty = me*{¢ + 2§¢ + cos ¢ sin ¢(9 + Q)?

27“0

L9
;

cos §sin ¢(1 — —g)} (7

Fy=m{l — 6($)? — Lcos? (8 + Q)?

02r3e rd
?”fno — Q%rg cos ¢ cos (1 — E(::)} (8)

For the limiting case ro > ¢, we have r,, >~ rg, and Eq. (4) implies

rs 14
1—T—;’—z3cos¢c089;;. 9)

Using Eq. (9), the approximate motion equation of the system for the case ro > £ is found
to be

F = ml{l — 08% — L cos? (6 + Q)? + £0? — 3Q%L cos® ¢ cos® 6}
+ mé{éﬁ cos ¢ + 2(6 + Q)(ﬁ cos ¢ — L sin ¢) + 397 cos § cos ¢ sin 6}
+ m{Ld + 204 + £ cos ¢ sin $(6 + Q)% + 3£97 cos® § cos ¢ sin ¢},
which agrees with the model derived by Arnold [2] using the gravity gradient method.
Note that, in the analysis of the following sections, we do not assume ro > £.
II1I. Analysis and Control in the Station-Keeping Mode
I11.1. Model in State-Space Form

Suppose cos ¢ # 0 (i.e., ¢ # +£7) and let the applied tension force be the only external
force acting on the system. Thus, for instance, we neglect effects of a rotating atmosphere,
the Earth’s magnetic force, solar radiation, and the oblateness of the Earth. We do not
take into account the mechanism for commanding the desired tether tension, although one
can imagine it to be controlled by a reel mechanism.

Since (i) we have modeled the satellite and subsatellite as point masses, (ii) the tether

is assumed rigid, and (iii) there are no external forces besides the commanded tether
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tension, we conclude that the generalized forces acting on the subsatellite are Fy = T,

79 =0, 74 = 0. Eqgs. (6)-(8) can now be rewritten in state space form as follows:

¢ = wy (10)
1 2 ;
Wy = —g}w(ﬁ ~3 sin(2¢ )(wp + Q)2 — Q[O cos §sin (1 ~ ;%0‘ (11)
é = Wy (12)
. 2 027y siné rd
Wy = ——z—(wg + Q) + 2tan gb(wg + Q)wd, - m(l - a‘) (13)
P = (14)
02rde
. 2 0
v = ,ewi -+ £ cos ¢(w0 + Q)2 - T?n
+ Q%ry cosfco ¢(1—Ig—)+z 15

For the case in which the tether length is held constant (ie., L =v =0, £ = £* = a
constant), the conditions for an equilibrium point are § = nm and ¢ = mn, where n,m
are integers. (We disregard another apparent possibility for ¢, since the corresponding
equation has no solution for ¢ when 8 = nx.) At the equilibrium point (0,0,0,0) when
only Eqgs. (10)-(13) are considered with v = 0, the linearized system of Egs. (10)-(13) has

the two conjugate pairs of pure imaginary eigenvalues

3
A2 = :l:iQ\/l + %(1 - —-3"—0—), and (16)
m,0
.~ [To r3
A3,q4 = £iQ 2;(1 - 7”_371;,—0 ) (17)
where
"m,0 ‘= To -+ 6* (18)

The eigenvalues )\ 2 are associated with Eqs. (10) and (11), i.e., with the out-of-plane
dynamics, and A3 4 are associated with Egs. (12) and (13), i.e., with the in-plane dynamics.
The appearance of pure imaginary eigenvalues suggests the possibility of oscillations

near the equilibrium point (0,0,0,0). Specifically, if the reel mechanism acts like a latch,
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resulting in a fixed tether length, the system may have librations with two distinct fre-
quencies along with the orbital motion.

In the sequel, we consider the problem of designing tension control laws rendering the
TSS asymptotically stable in the station-keeping mode. The main difficulty will be the
presence of the two pairs of pure imaginary eigenvalues, and the uncontrollability of one
of these pairs.

The conditions for an equilibrium point of system (10)-(15) are

3
0=Q%sing{ cos¢ + %— cosf(1 — 7%)—) } (19)
Q%rysiné rd
2,.3 3
0 = £92? cos? é— Qr:()e + Q2%ry cos b cos ¢(1 - ;Tég-) + % (21)

where the applied tension force T' (applied through a reel mechanism) may be constrained
to satisfy (21). From the definition of out-of-plane angle ¢, we have —% < ¢ < 7. There
are hence only two equilibrium points: (0, 0, 0, 0, £*, 0) and (0, 0, m, 0, £*, 0) if the tether
length is fixed at, say, £ = £*. In our paper [9], it is observed that the set ¢ = 0, wy =0
is an invariant manifold for Eqs. (10)-(15), regardless of the form of the tension control
law T. Although this implies that the system (10)-(15) is uncontrollable, we find below
that there does exist a control strategy stabilizing the system. With an assumed rigid and
massless tether, there may appear to be no constraint on the value of the applied tension
force T. In reality, however, the tether is not rigid. Thus the subsatellite cannot be pushed
away from the satellite by the applied tension force through the tether. Note that, in this
paper, the sign convention implies that a positive value of tension would correspond to a
slack tether. Hence, in the sequel we restrict the applied tension force T' to assume only
nonpositive values. Although the conclusions we will reach will also apply to the model
(10)-(15) in the absence of this restriction, they would no longer relate to the physical

problem.



IT1.2. Stabilization for In-Plane Angle Near 6 =0

Let zo = (0,0,0,0,£*,0)T and X = z — zo, where z = (¢, wg, 6, wy, £, v)T. Then the
Taylor expansion of the right side of Eqs. (10)-(15) is, to third order in X,

d T
'C'l—t-X = LOX+Q0(X,X)+Co(X,X,X) +6U+e;?‘—- (22)

where the matrix Ly, the quadratic form @Qg, the cubic form Cj, the vector e and the scalar

U are given, in terms of parameters a; defined in Appendix A, by

0 1 0 0 0 0
-a2 0 0 0 0 0
In— 0 0 0 1 0 0
1 0o 0 -a3 0o o0 -322
0 0 O 0 0 1
0 0 0 20*Q a3 0
0 ~
—2945&)9 + a12¢£ — %w(ﬁv
0
Qo(X, X) = a1200 — f—z*-U.)g’U + 2Q¢wy + Z’,,—%Ev
0
as6? + 0wl + 20wel + as #% + E*wi + ay30?
0 ~ ~
ag®?p — wid + ar¢® + agpl® + ??rgquﬁv
0
Co(X, X, X) = agf® + a100¢% + agb? + 2¢wgwe + Tf—gwogv — 3,2, 2y
0

a140%0 + w%é—- 20*Quad? + a1 + wié-{— a5

e =(0,0,0,0,0,1)T

o (3r20* + 3rgl*? + £*3)Q?
- (ro +£*)?

where £ := £ — £*. The expressions above have been verified using the code MACSYMA.*

Case 1: Linear State Feedback

1 MACSYMA is a trademark of Symbolics, Inc., Cambridge, MA.
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Our first design is that of a tension control law in linear state feedback form which
stabilizes the system. The design is carried out in two steps. The first, addressed in Lemma
1 and Corollary 1 below, is to give conditions on the linear state feedback ensuring that

four of the eigenvalues of system (10)-(15) are moved to the left half of the complex plane.

These eigenvalues correspond to the “in-plane variables” (6, wq, £, v).

Lemma 1. If the following conditions hold, then the tension control force T' = m(-U —
k10 — kowe — ksl — ksv) stabilizes the “in-plane Jacobian matrix” at the equilibrium point
29, i.e., the Jacobian matrix of Egs. (12)-(15) with respect to the vector (8,ws, £, v):

(i) ks > 0

(ii) b1,b2,b3 > 0
(iii) kabyby — b2 — k3b3 > 0

where
. (2rof*? + £*)Q%  2Qk, 2
e Yk R (23)
_ k‘4(37‘8 + 37‘80" + T0£*2)Qz 29[(21
= (ro + &) e 24
b — (8r3 + 3r2f* + rof*2)Q2 5 (3r3 + 3rZe* + 3rof*? + £*3)Q)2 o5
3= (ro + €*)3 (ks — (ro + £*)° )- (25)

Sketch of proof: The linearization of (22) upon application of the linear state feedback T

above is given by

d

—d—tX = Lo X
where
0o 1 0 0 0 0
——a% 0 O 0 0 0
= 0O o0 © 1 0 0
Lo=1"9 o - 0 0 -~
0 0 0 0 0 1
0 0 -—kl —kz + 20%Q —k3 -+ as -—k4

Hence the characteristic equation of the closed-loop system is
()\2 +a%) ()\4-}-]64)\3 +b1A2+62A+b3)=0 (26)
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where b;, ¢ = 1, ..., 3 are as defined in Eqs. (23)-(25). The lemma follows readily by
applying the Routh-Hurwitz test to the second polynomial factor in the left side of Eq.
(26).

The next result follows readily from Lemma 1, and demonstrates that the set of
feedbacks of Lemma 1 is not vacuous, at least in the practically interesting case ry > £*.
The result also holds for larger £*, but the corresponding conditions on the feedback gains

become very complicated.

Corollary 1. If ro > £*, the conclusion of Lemma 1 holds when any of the following three
conditions is satisfied:
(1) 0> k1 > £*Qka(1 — £25), k2 = 0, k3 > 302, and ks > 0;
(i) 0 > ky > koky, k2 <0, k3 > 3Q%, and k4 > 0;
(iii) k1 = 0, ko < min{20€*, £ ks + 39}, k3 > 3Q2, and k4 > 0.

From the closed-loop characteristic equation (26), we infer that the system has an
uncontrollable pair of pure imaginary eigenvalues. Moreover, it is easy to see that even
when the states ¢ and wgy are used in the tension control law, these two pure imaginary
eigenvalues remain fixed. Hence the stability of the closed-loop system cannot be identified
from the linearized model alone.

The closed-loop system (upon application of a feedback law as in Lemma 1 or Corollary

1) is approximated, to third order in X, by

d o
=X = LoX + Qu(X, X) + Co(X, X, X) (27)

in which L, has a complex conjugate pair of pure imaginary eigenvalues, with the remaining
eigenvalues in the left half of the complex plane. This situation is an example of a critical
case in nonlinear stability analysis. Its resolution may be approached via results on Hopf
bifurcation for one-parameter families of nonlinear systems (see, e.g., [16]). The local
asymptotic stability of the origin of Eq. (27) can be concluded from the negativity of
an associated “stability coefficient,” often denoted by f;. The value of this coefficient
can be obtained in several ways. One can, for instance, study normal forms of Eq. (27).
Alternatively, one observes that, in the situation at-hand, smooth parametrizations of
(27) will typically exhibit a Hopf bifurcation. The stability of the bifurcated periodic
solutions, as well as that of the origin of (27), follows from the negativity of the Floquet
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exponents of these periodic solutions. The stability coefficient 8, can be obtained as

the leading coefficient in an asymptotic expansion of the critical Floquet exponent. The

coefficient 2 may be computed systematically. When f; < 0, the equilibrium point is

locally asymptotically stable, while 82 > 0 implies instability of the equilibrium. The case

B2 = 0 is inconclusive regarding stability. We now proceed to use an algorithm for the

computation of 8, (see for instance [10], [16]) to determine the dependence of 3; on the

gains ki, 1 =1,...,4.

Denote by r and [ the right (column) and left (row) eigenvectors, respectively, of L

corresponding to the imaginary eigenvalue ta;. Requiring Ir = 1, we have

r = (1,1a;,0,0,0,0)T

1 1

l=(=,—i=—,0,0
(5050 0:0,0,0)

Next, solve the equations

~ 1
_LOG' - 'é'QO(ra F)?

(2ia1I — fxo)b = %Qo(ra 7“)

(28)

(29)

(30)

(31)

for the vectors a and b. Here, an overbar denotes complex conjugation and I denotes the

identity matrix. We find
a=(0,0,0,0,—

b=(0,0,c1,cz,cs, C4)T

2
as — £*ay

2(0,3 - k3) ’

0)T

where the a; are as in Appendix A, and the ¢; and d; are given by

1 as L*a?
=15t
dl + Zdz 2 2

5]

¢y = 2iaycy

o ier(4a? — ad)
3= — — ————=¢

4 4(119
ey | £*(4d} — a%)c
“=73 20

11

e* 3
- 'Z(k';; — 0,3) - %k4a1€*}

(32)

(33)

(34)
(35)

(36)

(37)



and
£¥ky
20

di =k + (4&? — ag) (38)

r(da? - a3)

dy = 2a4(ky — 20*
2 ai(ke — 20*Q) + 1000

(as + 4a? — k3) (39)

In general, the value of the bifurcation stability coefficient 3, is given by the formula

Ba = 2Re {21Q0(r,0) + 1Qu(, ) + $1Cu(r, 7, 7)) (40)

In our case, we then have

(6r8 + 4r2L* 4 ro0*2)Q2
2(7’0 + 8*)4

b2 = —{~Qlm(ca) + I(es) + 5- Re(ea)}

= g“:— - Re(er) (41)

a

where (assuming £* < ry)

0*(4a? — a3) (673 + 4r2e* 4 rol*?)0? + a1(4a? — a2)

d3 = —2&19 - 8a19 (T‘O +£*)4 29 > 0 (42)
. 1 as E*a% £* 1 *
Re(e1) = pr {( 5 + 5 T (ks —a3))dy — §k4a1£ da} (43)

Since a; > 0, d3 > 0, and since stability is implied by 8, < 0, we have the following

result.

Theorem 1. If a linear state feedback controller T' as defined in Lemma 1 is applied, with

*a?
2

£ 1 .
(923 n — (ks — a))ds = Shsar£*dy <0,
then the equilibrium point zo will be rendered asymptotically stable for the system (10)-
(15).
The next result readily follows from Theorem 1 and Corollary 1.

Corollary 2. If rg > £* and a linear state feedback control T' as in Lemma 1 is applied,

with either of the following three conditions satisfied, then the conclusion of Theorem 1

holds:
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(1) 0> k1 > £*Qka(1 — 225), k2 = 0, 302 < k3 < 1402, and ks > 0;
(i) 0 > ky > koka, 0> ko > 20*Q — 138819 — k) 302 < £y < 1402, and ky > 0;
(iii) k1 = 0, min {200%,3Q?} > ky > 20*Q — 13£2(19 — X3y 302 < k3 < 1402, and
ks > 0.

Case 2: Nonlinear State Feedback

Next we present a result on stabilization with a tension control law including both
linear and nonlinear terms. The nonlinear terms introduce more flexibility in the design,
and, as will be seen in Section IV, can lead to superior transient response.

By computing the eigenvectors [ and r and using the formula (40) for 32, we find that
any cubic term in the feedback has no effect on the value of B2. We are therefore led to
hypothesize a feedback containing only linear and gquadratic terms. The component of the
closed-loop quadratic term Qo(X, X) depending on the states 6, wy, ? or v is also found to
have no effect on f;. The next theorem gives conditions for a nonlinear feedback, of the

form motivated by these observations, to be stabilizing,.

Theorem 2. If condition (44) below holds, then the applied tension control force T =
m(—U — k10 — kawp — k3l — kv — 16% — qzdwy — gsw}) stabilizes the system (10)-(15),

where the k;, i = 1, ..., 4 satisfy the conditions of Lemma 1.
- +a £ + £ a "
(=4 (5 LYaf = (ks — as) )y + G (—g2 = £ka)dz <0 (44)

Here, d;, da are given in Eqgs. (38) and (39), and the a; are as specified in Appendix A.

The proof entails checking the effect on the value of B, of adding the extra quadratic
term —(q1 4% + gadwy + q;:,wi) in the last row of Qp(X, X).

As mentioned above, inclusion of nonlinear terms in the feedback control may be used
to improve the transient response of the stabilized system. In particular, the rate at which
system trajectories decay toward the equilibrium point may be significantly increased.
Simulation evidence for this is given in Section IV.

It is not difficult to give analytical reasoning to support this conclusion, and to guide
in the tuning of the linear and quadratic feedback gains. Assume ro 3> £*, and use Eq.
(40) with a feedback of the form given in Theorem 2 to ascertain the approximate formula

£ + g3
2

9Q —q1 +as
T

+(C3 80— (ks — ) )il

13



+ S(=g2 = £ka)ds ) (45)

Eq. (45) can be used to show that, if 7o > £* and the linear gains k;, ¢ = 1, ..., 4, are
chosen according to condition (i) of Corollary 2, with k; = 0, then B2 may be rendered as
negative as desired simply by setting the quadratic gains ¢ = ¢3 = 0 and taking ¢; > 0
and sufficiently large. Thus the gains k; may be used to place four of the eigenvalues of
(10)-(15) in the left half of the complex plane, while, independently, the gains ¢;, ¢ = 1,2,3,

are used to make B2 negative and of large magnitude.

I11.3. Stabilization for In-Plane Angle Near § =7

Similarly, now let z, = (0,0,7,0,£*,0)7 denote the equilibrium point of interest, and
X = z — z, be the differential state variation. Then the system (10)-(15), to third order

near the equilibrium point z,, may be written as follows

d
ZX = LaX + Qu(X, X) + C(X, X, X) + eUx + e%

Here, Ly, Qx, Cr are as identified in Appendix B. The next lemma is analogous to Lemma

1, and so is stated without proof.

Lemma 2. Let the applied tension force be of the form T = m(—Ur—ky 6 —kowg—kal— kqv),
where 8 := 0 — 7 and wg := 6 = 6. Then the “in-plane” Jacobian matrix of Eqs. (12)-(15),
i.e., the Jacobian of the right side of (12)-(15) with respect to (8,ws, £, v), will be stable at

the equilibrium point z, if k;, ¢ = 1, ..., 4, satisfy the following conditions:

(i) k4 >0,
(ii) hi,h2,hs > 0, and
(iii) kgh1hy — h3 — k3hs > 0.
Here, the auxiliary parameters hy, h2, hs are given by

(27’06*2 - 5*3)92 _ 2Qk‘2

_ 2
hl - k3 (7'0 . ﬁ*)s £* + 4Q ’ (46)
ky(8r3 — 3rie* +rof*?)Q% 20k,
— — 4
h2 (TO N ﬁ*)3 0% ? ( 7)
(37'3 ~ 3rier + TOE*Z)QZ’ k (3rd — 37"(2,6* + 3r¢f*? — 6*3)92 48
hs = (ro — £%)3 (k3 — (ro — £%)° )- (48)
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Corollaries 1 and 2 remain valid. The detailed statements need not be given.
IV. Simulation Results

A TSS with the following characteristics is considered:

e Nominal tether length ¢* = 100 km,

¢ Orbital radius ry = 6598 km,

e Subsatellite mass m = 170 kg,

¢ Orbital angular velocity Q = 0.0011781 radians/second.

Let the equilibrium point of interest of (10)-(15) be o = (0,0,0,0,£*,0). Simulation
results will now be presented which illustrate the system dynamics for the various types
of control studied in this paper.

Let the initial conditions of the system be ¢ = 0.01 radians, § = —0.01 radians, and

wg = wg = 0.
Ezample IV.1. ( No tension control: latch mechanism)

Suppose the reel mechanism acts like a latch fixing £ at £*. The system response
for the in-plane angle 6 and the out-of-plane angle ¢ is shown in Figures 3(a) and 3(b),

respectively. We observe an apparent undamped oscillation near the equilibrium point z,.

Ezample IV.2. (Linear stabilizing feedback)

The tension controller is taken as T = —m(U + ksl + kav), with k3 = 3.1Q2, ky =
0.0034, and U = 0.41019. The control law is stabilizing, as can be checked using Theorem
1. Indeed, B2 ~ —0.0004 for the closed-loop system. The response of the variables of

é, 6, and the deviation £ of the tether length are shown in Figures 4(a), 4(b) and 4(c),
respectively. However, it is not easy to see in Figure 4(a) any decay of the oscillation in
the out-of-plane angle ¢. This may be attributed to the fact that |32| is small. The applied

tension force is shown in Figure 4(d).
Ezample IV.3. (Linear-plus-quadratic stabilizing feedback)
Let the tension control law be of the form
T=-m(U + ksl + kav + 19 + qaowg + qgwi), (49)
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where U = 0.41019. The out-of-plane angle ¢ decays when k3 = 3.1Q2, k4 = 0.0034,
¢1 = 1500, and g, = g3 = 0 as, shown in Figure 5(a). However, this is at the expense of
large variations in 6 and Z, as depicted in Figures 5(b) and 5(c). The applied tension force
is shown in Figure 5(d).

Ezample IV.4. (Linear-plus-quadratic stabilizing feedback)

A further example is depicted in Figure 6. In this example, k3, k4 and g5 are unchanged

from their previous values (given in Example IV.3), but now ¢; = 0, and ¢ = 10°.
Ezample IV.5. (Switching-type stabilizing feedback)

Figure 7 relates to an example invoking a switching control strategy. The nonlinear
feedback control law of Example IV.3 is used for the first 5 hours of the simulation. Then
the control law is switched to a purely linear feedback with the parameters values specified

in Example IV.2.

V. Concluding Remarks

In this paper, we have presented analytical designs of tension feedback control laws
for the stabilization of the tethered satellite system during station-keeping. These designs
are based on calculations related to Hopf bifurcation stability. The calculations have been
performed for a model of the tethered satellite system derived under several simplifying
assumptions. This model is characterized by its nonlinearity and the existence of two
critical modes, one of which cannot be removed by (linear) feedback. Notwithstanding this
fact, we have been able to construct stabilizing controllers using linear and/or quadratic
feedback. Cubic terms were not included in the feedback laws since the nonlinear stability
calculations indicated that their effect might be of only secondary significance. Moreover,
simulation was used to demonstrate the validity of the analytical designs. The simulations
also indicated the importance of quadratic feedback of the out-of-plane angle ¢ and/or
the out-of-plane angular rate wg in improving the transient response of the out-of-plane
variables, i.e., in dampening the roll oscillations.

Regarding the issue of how to achieve further improvements in the transient response,
several possibilities arise. Optimization-based computer-aided design tools can be applied
to systematically search for linear and/or nonlinear control gains resulting in a subopti-

mal transient response. If other actuators, such as subsatellite thrusters or tether base
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movement, are available in addition to tether tension control, then one expects improved

transient performance.
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Appendix A
The values of the coefficients a;, 7 = 1, ..., 15 are as listed below.
4rd 4+ 6r20* 4 drol*? 4 £*3
a1=(( 0 0 *03 ))1/23'2
(ro +£*)

(3r3 + 3r2e* + rol*?)

— 1/29
az ( (7"0 +£*)3 )

_(3rd + 3rZe* + 3rof*? 4 £4)Q°

@ (ro + €*)3

_ (6ral* 4 6r30*2 + 4rZ 03 + rol**)0?
= 2(ro + £%)*

_ (8r3£* + 14r30*2 + 160203 4 Orol*t + 2£*5)92
as =~ 2(7‘0 + E*)‘*
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B (61 + Irg£* + 10736*2 + B5r20*3 4 rel*4)Q2

Qg

2(7’0 + E*)5
o — (1675 + 29r50* + 50r3£*% + 45r20*3 + 21rof*t + 4£*5)0)2
T 6(T0 + E*)5
v = (1073 + 5rae* + rel*2)Q2
’ (ro +£*)%
= (12r5 + 9rs0* + 10730*2 4 5r20*3 + ro£*4)Q2
= 6(7"0 +f*)5
d (27rdl* + 30r30*2 4 15720*3 4 3ro0*4)Q2
10 6(ro + £*)°
G = (4r5 + 2rgl* + 10r30*2 4 10r20*3 + 5rol*t 4 £*°)Q2
S (673 + 4r2e* + rol*2)0?
12 = (ro 4 £°)2

e — 3r3Q?
13 — (TO +£*)4
(3rf — 3rae*)0?
a4 = —
(ro + £*)3
4r892
Ay = —————.
15 (ro + £°)

Appendix B

The system model (10)-(15) is approximated, to third order in the states, near the

equilibrium point z, by

. T
X =L X+Qr(X,X)+Cr(X, X, X) + eUx +e—n;

where
0 1 0 0 0 0
—-f8 0 O 0 0 0
.| © 0o o 1 0 0
] 0 o0 -f2 0 o0 -32
0 0 0 0 0 1
0 0 0 200 fs O



0
—2Qdwg + f12¢g — Z%thbv
0
f120~£~—— 22;(.00'0 + 2Qéwy + ffiﬁv
0
F10? + 0w} + 2wl + f5¢7 + L2003 + frs?

0
f66% ¢ — wie + f14° + fadl? + 273*20-74)!7’0
0

Cx = | 08 4 fofig? + 0 + 2pi0 + sl - 22
0

v

f14§25+ wgé - 2£*QLU9¢2 + f11¢2g+ wié-l— f15E3

e =(0,0,0,0,0,1)

U — (3r2e* — 3rol*? + *3)Q2
T (ro — £*)?

and the values of f;, ¢ =1, ..., 15 are

(4rd — 6720 + 4rgl*? — 0*%) 4 )y
f1:( (7‘0-—6*)3 )/Q

(3r3 — 3rie* + rol*?)

_ 1/2
fa = ( (ro — £°)° )EQ

_ (3r3 —8rdL* + 3rol*? — £*3)Q0?

fs

(ro —£*)°
b= (Brée* — 6r30*2 +4r30*3 — rol*)V?
47 2(7‘0 - Z*)‘l
fs = (8rdg* — 14r30*2 + 16720*% — 9rgl** + 20*5)Q2
5 2(7‘0 - f*)4
fo = (6rF — 9rgl* + 10r30*2 — 5r20*3 + rol*)Q?
2(7‘0 — E*)5
b= (1618 — 29r80* + 507302 — 45r3€*3 + 21rol** — 40¥5)Q2
T 6(ro — £*)°
F (1073 — 5rZe* + rol**)Q?
8 = —

(ro —£*)
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(120§ —9rgl* +10r5£*% — 5r5L*° + rof*4)Q?

f9 6(7‘0 - E*)5
fio = (27r§£* - 307‘8’@*2 + 157'(2)€*3 - 3r0€*4)Q2
6(7‘0 — é*)5

fiy = — (4r5 — 2rd0* + 10r3€*2 — 10r26*3 + 5rol* — £*°)Q2
11 — (To . e*)5
fiz = _(6r§ = 4rie* + ro*?)Q?

12 — (7'0 _ E*)‘i

3r3q?

flSzm

(3r% + 3rier)0?

47'392
fis = s

Satellite

Subsatellite

Figure 1. TSS in circular orbit.
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Figure 2. Rotating coordinate system.
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Figure 3. Simulation results for uncontrolled system.

22



¢ (radian) 0 (radian)

=3
%%
=3
I I’ 1 )

-0.01 -0.01

0. (a) 4. t(hr.l) 0. (i)) 4. t(hr.|)
¢ (km) T (kg-m/sec?)

-68. |

-70.“\/-—‘

. . X -72. . ‘ '
0. () 4. ¢ (hr) 0- (@ 4. ¢ (br)

o
o .
l‘ 1 lp i

Figure 4. Simulation results for linear feedback system.
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Figure 5. Simulation results for nonlinear feedback system (g1 = 1500).
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